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line couplers. This feature becomes more noticeable when the
impedance levels deviate further away from those of the conventional
coupler or the lengths differ further from quarter-wave. This is an
important drawback of the present coupler, and for wider bandwidths
different methods, such as the optimization technique in [3], could be
used.
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A Simple Equation for Analysis of Nonuniform
Transmission Lines

Robert Nevels and Jeffrey Miller

Abstract—The solution to the telegrapher equations is often presented
as a D’Alembert expression for the voltage in terms of the voltage at a pre-
vious time or for the current in terms of the current at a previous time.
In this paper, we present a complete solution for the coupled set of trans-
mission-line equations such that the voltage or current is in terms of both
the previous time voltage and current amplitudes. The key features of these
equations are: they require only the initial voltage and current amplitudes,
positive- and negative-direction traveling waves do not have to be identified,
they are valid on a nonuniform transmission line, and they are related to the
frequency-domain -parameter equations and the D’Alembert ex-
pressions for coupled functions. A method is presented for evaluating this
set of equations numerically and results are given for a transmission-line
filter and for a transmission line with a nonuniform section.

Index Terms—Distributed parameter circuits, transmission lines.

I. INTRODUCTION

In many textbooks, e.g., [1], general real-time solutions to the trans-
mission-line voltage and current wave equations
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for a lossless line are given, respectively, by the D’Alembert solutions

V (z; t) =V + t� z

v
+ V � t+

z

v
(2a)

I(z; t) =I+ t� z

v
+ I� t+

z

v
(2b)

whereL andC are the transmission-line inductance and capacitance
per unit length andv = 1=

p
LC is the velocity of the line voltage

and current waves. The interpretation of (2a) is that the voltage at a
particular time and position, i.e.,t andz, respectively, on a transmission
line is exactly equal to the sum of the forward(V +) and reflected(V �)
traveling voltage waves that existed at a timet0 = t � z=v, at the
respective pointsz0 = z � vt. The expression for the current (2b) can
be interpreted in the same way. Although useful, implicit in (2) are the
assumptions that the transmission line is uniform and that the incident
and reflected voltage and current wave functions are known.

Below, we present a simple powerful alternative set of transmis-
sion-line equations in which it is not necessary to specify the direction
of travel of the initial input signal or even to distinguish the incident
from the reflected waves. In addition, these equations are valid when
the transmission line is nonuniform. Nonuniform transmission lines are
of particular importance in modern-day microwave circuits. For ex-
ample, tapered lines and concatenated lines with different characteristic
impedances appear both in analog and digital circuits as impedance-
matching devices and filters [2], [3].

II. A NALYSIS

The transmission-line equations
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for a two-port lossless nonuniform transmission line can be cast in the
form of a single-vector equation
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where the voltage–current vectorF and operator matrix�S are defined
by
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In the above equations, the distributed inductance(L) and capacitance
(C) are each functions of positionz, as are the current(I) and voltage
(V ), which are also functions of time. A solution to (4) can be found
by first finding the propagator matrixK that satisfies [4]
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with the initial condition

lim
t!0

K = I� z � z0 (8)
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where� is the Dirac delta function,z0 is the initial position of the
voltage and current at timet = 0, and�I is the identity matrix. A solu-
tion to (7), subject to (8), is

�K = e
�St� z � z0 : (9)

The matrix exponential on the right-hand side of (9) is expanded in
an exponential series, each term of which is allowed to operate on a
Fourier integral representation of the delta function. The terms of the
series are collected, once again producing a matrix exponential that
now resides inside the Fourier integral, given by
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The exponentiale
�St can be converted to a standard 2� 2 matrix via the

resolvent matrix method, which can be found in texts on state variables,
e.g., [5]. The resulting propagator is
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where the characteristic impedanceZ0 = L=C and velocityv are
both functions of the unprimed coordinatez. The purpose of the prop-
agator is to transition, over the time periodt, an initial voltage and cur-
rent distribution(V (z); I(z)) into the present time voltage and current
(V (z; t); I(z; t). This is carried out mathematically by spatially con-
volving the propagator with the initial voltage and current, of which
operation is expressed as
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The propagator in (13) can be evaluated analytically yielding

V (z; t)

I(z; t)

=
1

2

1

�1

[�(z+vt)+�(z�vt)] �Z0[�(z+vt)��(z�vt)]
�[�(z+vt)��(z�vt)]

Z0

[�(z+vt)+�(z�vt)]

�
V (z0)

I(z0)
dz0 (14)

wherez = z � z0. Since there are delta functions in each term, (14)
can also be analytically evaluated, giving the final set of equations
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An interpretation of (15) is as follows: the present time voltage, or
the present time current, is found by taking sum and difference com-
binations of the previous time–voltageand the previous time–current
amplitudes. The previous time voltage and current lie at the positions
z � t=v, as in (2); however, the information supplied here is thetotal
amplitudes at these points. That is, in contrast to (2), the positive and
negative traveling voltage and current wave amplitudes do not have
to be known. This provides a distinct advantage since, given only the
total voltage and current distribution on the transmission line at any
point in time, (15) will automatically filter out the positive and neg-
ative traveling waves and, through successive time steps, provide the
complete succeeding time response of the transmission line. An alter-
native derivation of (15), based on the method of characteristics, has
been presented in [6] and [7] for a homogeneous line.

Finally, an important observation is that the derivation of (15) was
carried out assuming the inductance (L) and capacitance (C) are func-
tions of position. These equations are, therefore, valid for nonuniform
transmissions lines. In the following section, examples are given that
demonstrate this property. It will also be shown that these equations are
self sufficient, i.e., other than an initial voltage and current distribution
and the characteristic impedance distribution, no additional informa-
tion is needed to determine the time evolution of the signal.

III. RESULTS

In the numerical method, the initial time is set tot0 rather than zero,
as was done in the derivation above, because its value will change as the
time history of the voltage and current waves are computed. The time
increment between the initial time and the present timet is chosen to
be a constant� , i.e.,� = t�t0, which is related to the numerical spatial
increment�z and the velocity of lightv by � = �z=v. This allows
us to make the replacementst ! � and, therefore,�v ! �z in (15),
resulting in
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V (z+�z)+V (z��z)
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which are convenient for numerical implementation. In (16), the char-
acteristic impedanceZ0 is evaluated at the pointz, while the contribu-
tions from the previous time voltage and current are from pointsz��z.

Usually a transmission line is nonuniform either because the char-
acteristic impedance or the dielectric constant of the material between
the conductors changes along the line. For a position-dependent dielec-
tric constant, the spatial increment�z is allowed to change along the
nonuniform transmission line according to�z = �v = �l= "r(z),
where"r(z) is the dielectric constant and�l is the numerical spatial in-
crement whenv = c, which is the speed of light in a vacuum. However,
on a typical nonuniform transmission line, the constitutive parameters
remain constant, whileZ0 varies continuously or changes abruptly, as
is the case at the junction of two transmission lines with different char-
acteristic impedances. When"r is a constant, which is chosen for our
following examples,�z remains constant along the entire length of the
line.

Fig. 1 shows a rectangular digital pulse propagating on a transmis-
sion line constructed with two sections, one having a characteristic
impedance of 50
 and the other 75
. Here, the spatial segment
width �z has been chosen to be 0.01 cm. The constitutive parameters
are chosen to be that of air in both transmission-line sections, thereby
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Fig. 1. Propagation of a rectangular digital pulse on two sections of
transmission line with characteristic impedancesZ = 50 
 andZ = 75 
.

Fig. 2. (a) Transmission-line filter with its (b) frequency response [comparison
of the results obtained with Libra and those based on (15)].

yielding the time increments� = 0:33 ps. The top graph shows the
initial input voltage pulse, which has a width of 20 spatial increments
(0.20 cm or 6.67 ps) and an amplitude of 1 V. Not pictured is an
associated input current pulse with the same amplitude, but divided by
the 50-
 characteristic impedance. Each application of (16), which are
computed at all segment nodes, propagates the voltage and current-one
time interval� . The remaining graphs of Fig. 1 show the evolution
of the pulse after 40, 100, and 160 time steps. In the final graph, the
numerically computed reflected and transmitted pulse amplitudes, i.e.,
0.2 and 1.2 V respectively, were found to be accurate to five decimal
places using single precision numerical arithmetic when compared
to the exact analytical reflection and transmission coefficients. Both
reflected and transmitted pulses exhibit ringing on the leading and
trailing edges, as has been observed in laboratory measurements.

Fig. 2(a) shows as series of concatenated transmission-line sections
with Z0 = 50 
, Z1 = 30 
, andZ2 = 80 
. Since the distributed
capacitance effect dominates in a transmission-line section with a low
characteristic impedance and distributed inductance dominates in a
high characteristic impedance section, this transmission line creates an
L–C low-pass filter, as depicted in the figure. The lengths of the trans-
mission-line sections with characteristic impedancesZ1 are 2.022 cm
and the section with characteristic impedancesZ2 is 2.128-cm long.

Fig. 3. (a) Nonuniform transmission-line section with its (b) reflection
coefficient versus frequency [comparison of exact result with numerical
calculations based on (15)].

The spatial segment has been chosen to be�z = 1� 10�4 cm and, as
above, the inductance and capacitance in the 50-
 line are chosen so
as to produce a phase velocity equal to the speed of light in a vacuum.
The time increment is, therefore,� = 33� 10�4 ps. The time-domain
response of this transmission-line configuration found using (16) with
a Gaussian pulse excitation is Fourier transformed and compared to
that obtained using Libra [8] computer-aided design (CAD) software.
The results shown in Fig. 2(b) are indistinguishable.

Fig. 3(a) shows a nonuniform transmission-line section of length
L, sandwiched between two uniform lines with characteristic imped-
ancesZ0 = 50 
 andZ1 = 75 
. The characteristic impedance of
the nonuniform section isZ(y) = Z0 exp[(y=L) ln(Z1=Z0)]. The re-
flection coefficient, again obtained by Fourier transformation of the
time-domain result, computed using (16) with a Gaussian excitation
pulse, is compared in Fig. 3(b) with the exact result [2]. A taper length
L = 0:2 m and segment width�z = 0:01 m allow only 20 cells in the
nonuniform line region, which is sufficient for good agreement over
the frequency range of 0–6 GHz. Greater accuracy can be achieved by
using smaller segments.

IV. CONCLUSIONS

A time-domain solution for the coupled telegrapher’s equations has
been presented in this paper. Each of the two equations in this solu-
tion only requires knowledge of the previous time total voltage and
current. It has been shown that, in order to determine the complete
time history of a signal, it is necessary to only know an initial input
voltage and current and the characteristic impedance or, equivalently,
the constitutive parameters of a transmission line. This set of equations
is simple to implement numerically and has been shown to give good
results with two and five transmission-line sections and with a nonuni-
form transmission line. It has been observed that, with these equations,
the transmission-line signal is not subject to numerical dispersion. A
fascinating property of these equations is that positive- and negative-di-
rection waves are automatically recognized and propagated in their re-
spective directions given only initial voltage and current amplitudes.

A interesting observation is that (13) can be converted to fre-
quency-domain form by replacing the time-domain voltage and
current V (z; t) and I(z; t) by their respective frequency-domain
counterpartsV (z; !) and I(z; !). This replacement, along with a
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time–harmonic initial voltage and currentV e�jk z and Ie�jk z ,
and again defining�z = �v, leads to

V (z)

I(z)
=

cos(ko�z) jZ0 sin(ko�z)
j sin(ko�z)

Z0

cos(ko�z)

V e�jk z

Ie�jk z (17)

The bracketed matrix term in (17) is the well-known time–harmonic
two-port transmission-lineABCD-parameter matrix. Using this re-
sult, it can be reasoned that (15) is the time-domain equivalent to the
frequency-domainABCD matrix (17).

Finally, it is observed that a traditional D’Alembert solution for the
coupled system (3) can be extrapolated from (15) by removing those
portions of the previous timeV and I that do not contribute to the
present timeV (z; t), I(z; t) as follows:

V (z; t) =
V �(z + tv) + V +(z � tv)

2

+
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�(z + tv)� Z+0 I
+(z � tv)

2
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I(z; t) =
V �(z + tv)=Z�0 � V +(z � tv)=Z+0

2

+
I�(z + tv) + I+(z � tv)

2
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It can be easily shown that (18) reduce to (2) by making the substi-
tutionsZ�0 = �V �=I� in (18) and recognizing that the arguments
t � z=v andz � tv have the same interpretation.
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Etched-Silicon Micromachined -Band Waveguides and
Horn Antennas

Bassem A. Shenouda, L. Wilson Pearson, and James E. Harriss

Abstract—Micromachining of silicon is broadly proposed for the
fabrication of substrates and waveguides at millimeter wavelengths. This
paper presents the results of the fabrication of finned diamond-shaped
waveguides and horn antennas by way of ethylene–diamene–pyrocatechol
anisotropic etching of silicon. The structure is fabricated in two halves by
etching V grooves in(100) silicon wafers. The etched faces of the wafers
were metallized with gold. Metallic fins evaporated on a thin layer of
Mylar and sandwiched between the two halves of the structure were used
to improve the bandwidth of the waveguide. Measurements were taken of
the dispersion curve of the waveguide with fins with different gap separa-
tions, and of the radiation patterns of the fabricated horns with different
flare angles at different frequencies. Measurements showed a very good
agreement with numerical calculations using the finite-element-method
technique. Computed attenuation curves for the structure are provided
as well.

Index Terms—Horn antennas, micromachining, millimeter wave
antennas.

I. INTRODUCTION

Silicon micromachining has been used to fabricate millimeter-wave
horn antennas and waveguides [1]–[3]. The flare angle of the previously
reported fabricated antennas [1], [2] was limited to 70.52� by the(111)
silicon crystal planes. To overcome the angle limitation, Guo [2] and
Johansson and Whyborn [4] suggested a diamond-shaped horn antenna
etched in silicon, and its fabrication was first reported by the authors
[5]. Croweet al.reported the fabrication of receivers and mixers using a
similar horn structure [6], [7]. This structure can be fabricated with dif-
ferent horn flare angles, which is desirable from a design point-of-view.
A diamond-shaped structure arises naturally through wet-etch micro-
machining of a(100) silicon wafer. The waveguide walls are aligned
with the(111) crystal planes, and the flare of the horns is a fine-scale
corrugation of triangular cross sections, all characterized by the 70.52�

angle between the(111) planes. However, since the etching process is
anisotropic and the etch in the(100) direction is dominant, the final
shape approximates the shape of the mask, but is corrupted to a small
extent by etching in directions other than the(100) direction. Optical
measurements are used to determine the actual flare angle of the fabri-
cated structure and the dimensions of the horn opening. The measured
dimensions are used in the numerical calculations.

II. FABRICATION

The antenna/waveguide assemblies depicted in Fig. 1(a) were
formed by etching 3-mm-thick(100) silicon wafers using ethy-
lene–diamene–pyrocatechol (EDP) etchant solution indicated by Wu
et al. [8]. The wafer was masked with a pattern consisting of three
pairs of waveguide/horn structures to fabricate three waveguide/horn
assemblies with different horn-flare angles. The masked wafer was
etched with agitation in the EDP solution at a temperature of 110�C
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